LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - MATHEMATICS

SECOND SEMESTER - APRIL 2023

PMT2MEO2 - PARALLEL INTERCONNECTION NETWORKS

Date: 08-05-2023
Time: 01:00 PM - 04:00 PM
Dept. No. \square

Max. : 100 Marks

SECTION A - K1 (CO1)	
	Answer ALL the questions (5x1=5)
1.	Answer the following
a)	Define interconnection network.
b)	What is subdivision of an edge?
c)	Define weight of a vertex x in a hypercube Q_{n}.
d)	Define Benes network.
e)	Define routing of a graph G.
SECTION A - K2 (CO1)	
	Answer ALL the questions $\quad(5 \times 1=5)$
2.	Choose the correct answer
a)	The dominating number of the following graph is (a) 3 (b) 4 (c) 5 (d) 6
b)	The complete graph K_{n} and complete bipartite graph $K_{m, n}$ are (a) vertex-transitive (b) edge-transitive (c) both (a) and (b) (d) neither (a) nor (b)
c)	The de Bruijn network of diameter 8 and degree 8 can interconnect processors (a) 565 (b) 5665 (c) 656 (d) 65556
d)	The diameter of $\operatorname{CCC}(\mathrm{n})$ is (a) $\left\lfloor\frac{1}{2}(5 n-2)\right\rfloor$ (b) $\left\lfloor\frac{1}{2}(5 n+2)\right\rfloor$ (c) $\lfloor(5 n+1)\rfloor$ (d) $\lfloor(5 n-1)\rfloor$
e)	The forwarding index of a star $K_{1, n-1}$, is (a) $(n-1)(n-2)$ (b) $n(n-1)$ (c) $(n+1) n$ (d) $(n+1)(n+2)$
SECTION B - K3 (CO2)	
	Answer any THREE of the following (3x10=30)
3.	a) Let X and Y be subsets of $\mathrm{V}(\mathrm{G})$. Then prove that $d_{G}^{+}(X)=d_{G}^{-}(X)$ if G is a balanced diagraph. b) Let G be a strongly connected digraph with order $n(\geq 2)$ and the maximum degree. Then prove $\text { that } d(G)=\left\{\begin{array}{cc} =n-1 & \text { for } d=1 \tag{5+5}\\ \geq\left\lceil\log _{d}(n(d-1)+1)\right\rceil-1 & \text { for } d \geq 2 \end{array}\right.$
4.	Prove that the converse of $\overleftarrow{C_{\Gamma}(S)}$ of a cayley graph $C_{\Gamma}(S)$ is also a cayley graph. Also list 5 properties of a cayley graph.
5.	Define the de Bruijn Network B (d, n). Find the number of vertices and edges in B (2, n). Sketch B $(2,3)$.

$6 . \quad$ a) Define a mesh, cylinder and Torus networks of dimension $m \times n$. Also, draw a mesh, cylinder and torus of dimension 4×4.
b) Draw the 3-dimesnional Benes network BB (3).
7. a) Write a note on surviving route graph and give an example.
b) Find the forwarding index of the directed cycle C_{n}.

SECTION C - K4 (CO3)

Answer any TWO of the following

8. Define (i) dilation of an embedding and (ii) congestion of an embedding. For the embedding f of a wheel on 6 vertices onto a path on 6 vertices, find the dilation, congestion, dilation-sum and congestion-sum.

9. Give an example of an edge-transitive graph which is not vertex-transitive. Prove that every edgetransitive graph is either vertex - transitive or bipartite.
10. Let T_{n} be a binary tree of height $n, n \geq 2$ prove that
i. T_{n} cannot be embedded into Q_{n+1} with dilation 1
ii. $2 T_{n-1}$ can be embedded into Q_{n+1} with dilation 1
iii. T_{n} can be embedded into Q_{n+1} with dilation 2
11. Define a Butterfly network ($\mathrm{BF}(\mathrm{n})$) of dimension n. Find the number of vertices and edges in $\mathrm{BF}(\mathrm{n})$. Is $\mathrm{BF}(\mathrm{n})$ eulerian? Justify. Draw the diamond structure of $\mathrm{BF}(4)$.
SECTION D - K5 (CO4)

Answer any ONE of the following

(1 x $15=15$)
12. Define the n-dimensional cube-connected cycle $\operatorname{CCC}(\mathrm{n})$. Find the number of vertices and edges in CCC(n). Is CCC(n) eulerian? Justify. Draw CCC(3). Draw wrapped Butterfly WBF(3).
13. Let G be a strongly connected digraph with order n , prove that $\frac{1}{n} \sum_{y \in V} \sum_{x(\neq y) \in V}(d(G ; x, y)-1) \leq$ $\tau(G) \leq(n-1)(n-2)$. Also prove that the upper bound can be attained and, the lower bound of $\tau(G)$ can be attained if and only if there exists a minimum routing ρ_{m} in G for which the load of all vertices is the same.

> SECTION E - K6 (CO5)
14. a. If G is a connected undirected graph of order n and minimum degree δ, then prove that $d(G) \leq$ $\frac{3 n}{\delta+1}$.
b. Design an isomorphic graph for the following graph having crossing number as 5 .

c. Generate the Cayley graph when $\mathrm{G}=\{1,-1, \mathrm{i},-\mathrm{i}\}$ under multiplication and $\mathrm{S}=\{-1, \mathrm{i}\}$.

$$
(5+5+10)
$$

a. Define a hypercube Q_{n} using binary sequence and cartesian product. Prove that the two definitions are equivalent. Draw Q_{4} and also propose a shortest path between 0100110 and 1111001 in hypercube Q_{7}. Is this path unique? Justify.
b. For any given vertex x of Q_{n}, prove that there exists a unique vertex y such that the distance $d\left(Q_{n} ; x, y\right)=n$. Also prove that there is n internally disjoint (x, y) - paths of length n.

$$
(10+10)
$$

