LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034					
Ĩ	M.Sc. DEGREE EXAMINATION – MATHEMATICS				
2	SECOND SEMESTER – APRIL 2023				
8	PMT2ME02 – PARALLEL INTERCONNECTION NETWORKS				
Γ	Date: 08-05-2023 Dept. No. Max. : 100 Marks				
Т	Sime: 01:00 PM - 04:00 PM				
	SECTION A – K1 (CO1)				
	Answer ALL the questions $(5 \times 1 = 5)$				
1.	Answer the following				
a)	Define interconnection network.				
b)	What is subdivision of an edge?				
c)	Define weight of a vertex x in a hypercube Q_n .				
d)	Define Benes network.				
e)	Define routing of a graph G.				
	SECTION A – K2 (CO1)				
2	Answer ALL the questions $(5 \times 1 = 5)$ Channel the commutation $(5 \times 1 = 5)$				
2.	Choose the correct answer The dominating number of the following graph is				
a)	The dominating number of the following graph is				
	(a) 3 (b) 4 (c) 5 (d) 6				
b)	The complete graph K_n and complete bipartite graph $K_{m,n}$ are(a) vertex-transitive(b) edge-transitive(c) both (a) and (b)(d) neither (a) nor (b)				
c)	The de Bruijn network of diameter 8 and degree 8 can interconnect processors				
	(a) 565 (b) 5665 (c) 656 (d) 65556				
d)	The diameter of CCC(n) is				
	(a) $\left \frac{1}{2}(5n-2)\right $ (b) $\left \frac{1}{2}(5n+2)\right $ (c) $\lfloor (5n+1) \rfloor$ (d) $\lfloor (5n-1) \rfloor$				
e)	The forwarding index of a star $K_{1,n-1}$, is				
	(a) $(n-1)(n-2)$ (b) $n(n-1)$				
	(c) $(n+1)n$ (d) $(n+1)(n+2)$				
	SECTION B – K3 (CO2)				
2	Answer any THREE of the following $(3 \times 10 = 30)$				
3.	a) Let X and Y be subsets of V(G). Then prove that $d_G'(X) = d_G(X)$ if G is a balanced diagraph.				
	b) Let G be a strongly connected digraph with order $n(\geq 2)$ and the maximum degree. Then prove (-n-1) for $d-1$				
	that $d(G) = \begin{cases} -n & 1 & \text{for } d = 1 \\ \geq [\log_d(n(d-1)+1)] - 1 & \text{for } d > 2 \end{cases}$ (5+5)				
4.	Prove that the converse of $\overleftarrow{C_{\Gamma}(S)}$ of a cayley graph $C_{\Gamma}(S)$ is also a cayley graph. Also list 5 properties of a cayley graph.				
5.	Define the de Bruijn Network B (d, n). Find the number of vertices and edges in B (2, n). Sketch				
	B (2, 3).				

6.	a) Define a mesh, cylinder and Torus networks of dimension $m \times n$. Also, draw a mesh, cylinder			
	and torus of dimension 4 x 4. b) Draw the 3-dimensional Benes network BB (3) $(5+5)$			
	b) Draw the 5 dimesmonal belies network DD (5).			
7.	a) Write a note on surviving route graph and give an example.			
	b) Find the forwarding index of the directed cycle C_n . (5+5)			
SECTION C – K4 (CO3)				
	Answer any TWO of the following(2 x 12.5 = 25)			
8.	Define (i) dilation of an embedding and (ii) congestion of an embedding. For the embedding f of a			
	wheel on 6 vertices onto a path on 6 vertices, find the dilation, congestion, dilation-sum and congestion-sum.			
	$ \begin{array}{c} & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & $			
9.	Give an example of an edge-transitive graph which is not vertex-transitive. Prove that every edge-			
	transitive graph is either vertex - transitive or bipartite.			
10.	Let T_n be a binary tree of height $n, n \ge 2$ prove that			
	1. T_n cannot be embedded into Q_{n+1} with dilation 1 ii $2T_n$ can be embedded into Q_n with dilation 1			
	iii T can be embedded into Q_{n+1} with dilation 2			
11.	Define a Butterfly network (BF(n)) of dimension <i>n</i> . Find the number of vertices and edges in BF(n).			
	Is BF(n) eulerian? Justify. Draw the diamond structure of BF(4).			
	SECTION D – K5 (CO4)			
	Answer any ONE of the following(1 x 15 = 15)			
12.	Define the <i>n</i> -dimensional cube-connected cycle CCC(n). Find the number of vertices and edges in CCC(n). Is CCC(n) eulerian? Justify. Draw CCC(3). Draw wrapped Butterfly WBF(3).			
13.	Let G be a strongly connected digraph with order n, prove that $\frac{1}{n} \sum_{y \in V} \sum_{x (\neq y) \in V} (d(G; x, y) - 1) \le 1$			
	$\tau(G) \leq (n-1)(n-2)$. Also prove that the upper bound can be attained and, the lower bound of			
	$\tau(G)$ can be attained if and only if there exists a minimum routing ρ_m in G for which the load of all			
	vertices is the same.			
	SECTION E – K0 (COS) Answer any ONE of the following $(1 \times 20 = 20)$			
14.	a. If G is a connected undirected graph of order n and minimum degree δ , then prove that $d(G) < \delta$			
	$\frac{3n}{3}$			
	$\delta + 1$ b Design an isomorphic graph for the following graph having crossing number as 5			
	$\frac{7}{3}$			

	с.	Generate the Cayley graph when $G = \{1, -1, i, -i\}$ under multiplication and $S = \{-1, i\}$.
		(5+5+10)
		· · · · · · · · · · · · · · · · · · ·
15.	a.	Define a hypercube Q_n using binary sequence and cartesian product. Prove that the two
		definitions are equivalent. Draw Q_4 and also propose a shortest path between 0100110 and
		1111001 in hypercube Q_7 . Is this path unique? Justify.
	b.	For any given vertex x of Q_n , prove that there exists a unique vertex y such that the distance
		$d(Q_n; x, y) = n$. Also prove that there is <i>n</i> internally disjoint (x, y) - paths of length <i>n</i> .
		(10 + 10)
		\$\$\$\$\$\$